I am currently a postdoctoral fellow at USC. My research interests focus on cosmology, dark matter and dark energy.
Sterile neutrinos produced through self-interactions of active neutrinos have received attention as a particle candidate that can yield the entire observed DM relic abundance without violating the most stringent constraints from X-ray observations. We examine consistency of this production mechanism with the abundance of small-scale structure in the universe, as captured by the population of ultra-faint dwarf galaxies orbiting the Milky Way.
The presence of light thermally coupled dark matter affects early expansion history and production of light elements during the Big Bang Nucleosynthesis (BBN). Specifically, dark matter that annihilates into Standard Model particles can modify the effective number of light species in the universe Neff, as well as the abundance of light elements created buring BBN. These quantities in turn affect the cosmic microwave background (CMB) anisotropy. We present the first joint analysis of small-scale temperature and polarization CMB anisotropy from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT), together with Planck data and the recent primordial abundance measurements of helium and deuterium to place comprehensive bounds on the mass of light thermal-relic dark matter.
We consider a quintessence model with Yukawa interaction between dark energy and dark matter and constrain this model by employing the recent cosmological data. We find that an interaction in the dark sector is compatible with observations. The Yukawa interaction model is found to be moderately favored by Planck and able to alleviate the discordance between weak lensing measurements and CMB measurements as previously inferred from the standard Lambda cold dark matter model. N-body simulations for Yukawa interaction model is also performed. We find that using the halo density profile is plausible to improve the constraints significantly in the future.
We constrain interacting dark matter and dark energy (IDMDE) models using a 450-degree-square cosmic shear data from the Kilo Degree Survey (KiDS) and the angular power spectra from Planck’s latest cosmic microwave background measurements. We revisit the discordance problem in the standard Lambda cold dark matter (ΛCDM) model between weak lensing and Planck datasets and extend the discussion by introducing interacting dark sectors. The IDMDE models are found to be able to alleviate the discordance between KiDS and Planck as previously inferred from the ΛCDM model, and moderately favored by a combination of the two datasets.